
Basic Index Structures

CSC443, Winter 2019
Sayyed Nezhadi

Chapter 10

Motivation for Indexing

• Heap file supports sequential scan of records.
Theoretically, this is sufficient to implement all query
operators in SQL. However, the resulting efficiency
would be impractically poor (requires full scan).

• Indexing is to create secondary data storage to
minimize disk I/O for record scan and search.

Sequential File
• A heap file that all records are sorted by some key

attributes on each page and across multiple pages
• Stills requires record scan for searching a record but

requires less disk reads
• Search Algorithm:
– Load page pointers from the heap page directory
– Perform binary search by fetching the pages

• The total number of disk I/O required (worst case):

Dense Indexes
• Secondary storage which stores redundant data in order

to improve the efficiency of query processing
• A dense index is a sequential file whose records only

contain:
– The values over some key atteach index page contains much

more recordsributes
– A pointer to the address of the data record in the data

• Motivation:
– There may be a significant reduction in the record size in the

index file comparing to the records in the data file
– Each index page contains much more records, resulting in far

less disk I/O to scan sequentially (fewer pages to retrieve)

Dense Indexes

Sparse Indexes
• Combines the strengths of sequential files and

dense indexes, for fast record lookup using binary
search

• Data file is a sequential file (sorted by a key)
• The sparse index only stores the key values and

address for the first record of each data page in the
data file

• Motivation: To reduces the number of index pages
resulting in less disk I/O
☛ Assumption: for simplicity, we assume that we only need
to retrieve the first occurrence of a record.

Sparse Indexes

Sparse Indexes

• The total number of disk I/O required (to look for a
record):

• ”log” term is the number of page reads needed to
locate the index page

• “1” page read to load the data page

Multilevel Sparse Indexes (Tree Indexes)
• We can improve search using sparse index even

more by indexing the index by yet another sparse
index.

• The total number of disk I/O required (to look for a
record):

• ”NI2” is the number of pages for second level index
• ”log” term is the number of page reads needed to

locate the index page in “I2”
• “1” page read to load the index page in “I1”
• “1” page read to load the data page

Multilevel Sparse Indexes (Tree Indexes)

Limitation of Multilevel Sparse Indexes
• Multilevel sparse index can be applied successively.

The number of index pages is reduced at each level,
until at the top level, there should be only one index
page.

• While the multilevel sparse index structure is
efficient for record access, unfortunately, it cannot
easily support record inserts and updates.

• Sparse indexes can only index sorted sequential file.
So any record insert and update (on the sorting
attributes) must maintain the ordering. Heap file
only supports efficient record appends without any
concerns on the ordering of the records.

Indexed Sequential Access Method (ISAM)
• Overcomes the limitation of multilevel sparse index,

and supports fast record insert and update.
• Each data page in the data file can have any number

of overflow pages.
• Inserting a Record:
– Locate the data page using the index
– If the page or any of the overflow pages have free space,

insert the new record in the that page
– if all the overflow pages are also full, create a new

overflow page to store the new record

Indexed Sequential Access Method (ISAM)

ISAM: Insert Example

The record (25, ...) is inserted after the index is built. Since
there is no space available in the page(s) between the key
20 and 30, ISAM must create a new page which is
appended into the appropriate linked list. The insertion of
(25, ...) creates an overflow page.

Limitation of ISAM
• ISAM relaxes on the sortedness of records.

Consequently, the worst case performance for
record retrieval becomes:

• Cause: the multilevel sparse indexes are static in the
presence of data updates.

• Solution: B+-tree

B+tree
• A highly robust and popular data structure, which is

an extension of ISAM.
• B+ tree offers:
– fast record search
– fast record traversal
– maintaining sorted tree structure without overflow pages

• The key idea behind B+ tree is that it
utilizes balanced sorted tree of page pointers,
as opposed to just sorted tree in the case of
ISAM.

Definition of B+-tree
• A B+ tree is a tree whose nodes are pages on disk.

We will distinguish the leaf nodes and the interior
nodes of a B+ tree.

• Leaf Nodes: store the data entries in the form of
(key, value). All leaf nodes are organized into a
linked list of pages.

Definition of B+-tree
• Interior Nodes: form a tree structure, starting from

a root node, to speed up lookup of the leaf node
that contains a key of interest.

• The structure of an interior node can be visualized
as a sequence of alternating page pointers and keys.

Constraints and Properties of B+-tree
• Keys are sorted in the nodes
• Nodes are sorted by their keys (a sorted tree)

Constraints and Properties of B+-tree
• The tree is balanced: all paths from the root to the

leaf nodes must be of equal length.
• The nodes are sufficiently filled: B+ tree specifies a

percentage, known as the fill factor of the tree, that
controls the minimal occupancy of all the non-
root nodes.

• Example of
a bad tree

B+-tree Search
The B+ tree search algorithm is a straight-forward tree
traversal algorithm:

B+-tree Insertion
• Unlike the algorithm for insertion into a balanced

sorted binary tree, the B+ tree insertion needs to
deal with node overflows and underflows.

• The insertion algorithm starts with:
– look for the right leaf for insertion
– try to insert into the leaf node

B+-tree Insertion
• The insertion algorithm, insert_into_node, looks

something like this:

B+-tree Insertion – Case 1
The target node has available space for one more key:

B+-tree Insertion – Case 1

B+-tree Insertion – Case 2
The target node is full, but its parent has space for one
more key:

B+-tree Insertion – Case 2

1

2
3

Insert an entry with key=70 in the previous example:

B+-tree Insertion – Case 3
The target node and its parent are both full:

B+-tree Insertion – Case 3

1

2 3

Insert an entry with key=90 in the previous example:

The leaf
node is full.

The parent interior node is also full.

B+-tree Insertion – Case 3

4

5

Other Things about B+-tree

