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Motivation for Indexing

• Heap file supports sequential scan of records. 
Theoretically, this is sufficient to implement all query 
operators in SQL. However, the resulting efficiency 
would be impractically poor (requires full scan).

• Indexing is to create secondary data storage to 
minimize disk I/O for record scan and search.



Sequential File
• A heap file that all records are sorted by some key 

attributes on each page and across multiple pages
• Stills requires record scan for searching a record but 

requires less disk reads
• Search Algorithm:
– Load page pointers from the heap page directory
– Perform binary search by fetching the pages

• The total number of disk I/O required (worst case):  



Dense Indexes
• Secondary storage which stores redundant data in order 

to improve the efficiency of query processing
• A dense index is a sequential file whose records only 

contain: 
– The values over some key atteach index page contains much 

more recordsributes
– A pointer to the address of the data record in the data

• Motivation:
– There may be a significant reduction in the record size in the 

index file comparing to the records in the data file
– Each index page contains much more records, resulting in far 

less disk I/O to scan sequentially (fewer pages to retrieve)



Dense Indexes



Sparse Indexes
• Combines the strengths of sequential files and 

dense indexes, for fast record lookup using binary 
search

• Data file is a sequential file (sorted by a key)
• The sparse index only stores the key values and 

address for the first record of each data page in the 
data file

• Motivation: To reduces the number of index pages 
resulting in less disk I/O
☛ Assumption: for simplicity, we assume that we only need 
to retrieve the first occurrence of a record.



Sparse Indexes



Sparse Indexes

• The total number of disk I/O required (to look for a 
record):  

• ”log” term is the number of page reads needed to 
locate the index page

• “1” page read to load the data page



Multilevel Sparse Indexes (Tree Indexes)
• We can improve search using sparse index even 

more by indexing the index by yet another sparse 
index.

• The total number of disk I/O required (to look for a 
record):

• ”NI2” is the number of pages for second level index
• ”log” term is the number of page reads needed to 

locate the index page in “I2”
• “1” page read to load the index page in “I1”
• “1” page read to load the data page



Multilevel Sparse Indexes (Tree Indexes)



Limitation of Multilevel Sparse Indexes
• Multilevel sparse index can be applied successively. 

The number of index pages is reduced at each level, 
until at the top level, there should be only one index 
page.

• While the multilevel sparse index structure is 
efficient for record access, unfortunately, it cannot 
easily support record inserts and updates.

• Sparse indexes can only index sorted sequential file. 
So any record insert and update (on the sorting 
attributes) must maintain the ordering. Heap file 
only supports efficient record appends without any 
concerns on the ordering of the records.



Indexed Sequential Access Method (ISAM)
• Overcomes the limitation of multilevel sparse index, 

and supports fast record insert and update.
• Each data page in the data file can have any number 

of overflow pages.
• Inserting a Record:
– Locate the data page using the index
– If the page or any of the overflow pages have free space, 

insert the new record in the that page
– if all the overflow pages are also full, create a new 

overflow page to store the new record 



Indexed Sequential Access Method (ISAM)



ISAM:  Insert Example

The record (25, ...) is inserted after the index is built. Since 
there is no space available in the page(s) between the key 
20 and 30, ISAM must create a new page which is 
appended into the appropriate linked list. The insertion of 
(25, ...) creates an overflow page.



Limitation of ISAM
• ISAM relaxes on the sortedness of records. 

Consequently, the worst case performance for 
record retrieval becomes:

• Cause: the multilevel sparse indexes are static in the 
presence of data updates.

• Solution: B+-tree



B+tree
• A highly robust and popular data structure, which is 

an extension of ISAM.
• B+ tree offers:
– fast record search
– fast record traversal
– maintaining sorted tree structure without overflow pages

• The key idea behind B+ tree is that it 
utilizes balanced sorted tree of page pointers, 
as opposed to just sorted tree in the case of 
ISAM.



Definition of B+-tree
• A B+ tree is a tree whose nodes are pages on disk. 

We will distinguish the leaf nodes and the interior 
nodes of a B+ tree.

• Leaf Nodes: store the data entries in the form of 
(key, value). All leaf nodes are organized into a 
linked list of pages.



Definition of B+-tree
• Interior Nodes: form a tree structure, starting from 

a root node, to speed up lookup of the leaf node 
that contains a key of interest.

• The structure of an interior node can be visualized 
as a sequence of alternating page pointers and keys.



Constraints and Properties of B+-tree
• Keys are sorted in the nodes
• Nodes are sorted by their keys (a sorted tree)



Constraints and Properties of B+-tree
• The tree is balanced: all paths from the root to the 

leaf nodes must be of equal length.
• The nodes are sufficiently filled: B+ tree specifies a 

percentage, known as the fill factor of the tree, that 
controls the minimal occupancy of all the non-
root nodes.

• Example of 
a bad tree



B+-tree Search
The B+ tree search algorithm is a straight-forward tree 
traversal algorithm:



B+-tree Insertion
• Unlike the algorithm for insertion into a balanced 

sorted binary tree, the B+ tree insertion needs to 
deal with node overflows and underflows.

• The insertion algorithm starts with:
– look for the right leaf for insertion
– try to insert into the leaf node



B+-tree Insertion
• The insertion algorithm, insert_into_node, looks 

something like this:



B+-tree Insertion – Case 1
The target node has available space for one more key:



B+-tree Insertion – Case 1



B+-tree Insertion – Case 2
The target node is full, but its parent has space for one 
more key:



B+-tree Insertion – Case 2
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Insert an entry with key=70 in the previous example:



B+-tree Insertion – Case 3
The target node and its parent are both full:



B+-tree Insertion – Case 3
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Insert an entry with key=90 in the previous example:

The leaf 
node is full.

The parent interior node is also full.



B+-tree Insertion – Case 3
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Other Things about B+-tree


